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Abstract

This study focuses on measuring, analyzing and representing the spatial distribution and correlations 
between urban visual features in Milan, Italy, within the context of the Multilayered Urban Sustain-
ability Action (MUSA) project. Using Geographic Information System, Google Street View, and deep 
learning technologies, the research systematically analyzes streetlevel panorama pictures generated at 
sparse points in the city. Images are segmented according to urban categories ADE20K, focusing on 
greenery, ground, buildings, and sky. Through spatial continuity analysis, variograms reveal an aniso-
tropic pattern, indicating significant visual continuity on specific orientations. The study discusses rela-
tionships among urban features, such as the inverse proportionality between greenery and buildings/
sky. Autocorrelation analysis confirm localized areas with similar feature values, while point-neighbor 
mapping identifies significant negative spatial correlations between greenery, buildings, and sky. The 
variograms illustrate maximum continuity ranges influenced by historical expansion processes, and 
shared continuity limit among all four categories. The uneven distribution of urban characteristics is 
evident in the heatmaps. The presented methodology can be adapted for similar analyses in diverse 
urban contexts, providing a valuable tool for urban researchers and planners.
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Introduction

To understand the perception of spaces, it is essential to consider various factors that influ-
ence views and experiences. Research has shown that green spaces’ size, attractiveness, and 
appropriateness play a crucial role in shaping people’s perceptions of restorative effects and 
accessibility of these areas [Kaplan and Kaplan 1989; Lee et al. 2017]. Additionally, accessi-
bility and availability of green spaces correlate significantly with residents’ perceptions of the 
quality of urban green spaces and their satisfaction [He et al. 2022]. Furthermore, personal 
perception of factors such as safety can be modified by the physical distance of green spaces, 
indicating the intricate relationship between perception and environmental factors [Lee et 
al. 2017].
In 2019, Yang proposed a method to calculate the Green View Index from perceived green-
ness in photographs taken on the street [Yang et al., 2009]. Initially based on computer vision 
techniques for chromatic analysis, the method has since been refined using image segmenta-
tion techniques [Li et al. 2015]. 
Measuring the green coverage of residential units, the visible greening of surrounding street 
space, and public green land around residential areas through indicators such as the green 
coverage index and green view index provides valuable information on the impact of green 
spaces on communities [Gu et al. 2019; Kumakoshi et al. 2020]. 
Furthermore, street view images and deep learning technology have allowed analysis of 
street space perception factors and their correlation with human activity, highlighting the 
relationship between environmental perceptions and human behavior [Stancato, Piga 2024; 
Tao et al. 2022]. 
Furthermore, the impact of street space perception factors on elderly health has been an-
alyzed using street view images and deep learning technology, highlighting the role of street 
view, green space, and blue space in preventing depression in the elderly [Boffi et al. 2022; 
Meng et al. 2020]. Street view perception plays a crucial role in urban planner design and 
improvement of urban street layouts [Sun et al. 2023]. 
As is known, the first law of Tobler suggests that the closer the elements, the higher the mu-
tual influence or relationship [Tobler 1970; Walker 2022]; living in the urban environment, 
this concept means that the psychological effects of the urban environment do not only 
depend on being exposed to one spot but also to the continuity of a condition [Nejasmic et 
al. 2015]. 
The visual quality of the urban environment can be affected by several spatial elements, such 
as consistency and continuity in visible elements [Ye et al. 2019]; mapping how the visual pan-
orama changes across the city can help identify problematic streets, proposing appropriate 
zoning rules, and suggesting microscale design strategies. 
This work describes an approach to visual feature mapping of the urban environment to 
measure and represent the proportion of natural and built elements visible at street level. 
In addition, this paper focuses on spatial continuity to highlight zones of homogeneous char-
acteristics. 

Materials and Methods

The focus of this work is the built environment of Milan (Italy) for its central role in the Multi-
layered Urban Sustainability Action (MUSA) project of the National Recovery and Resilience 
Plan (NRRP).
For generating the initial location of the street points, I used the street polyline shape file 
from the Geoportale of Milan [Comune di Milano 2023]. This file is an open-source repre-
sentation of the street axis; in that representation, when a two-lane road is divided by a tree-
lined median it is represented as two parallel lines, this representation is useful in considering 
the different perceptions on the two sides of the tree-lane.
QGIS 3.34.1 has been employed to manage the shapefiles and generate points and heatmaps. 
Google_ streetview 1.2.9 is a Python library for managing communication with the Google 
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API and downloading spherical views from various positions along streets worldwide. Glu-
onCV 0.10.5: is an open-source deep learning library designed for computer vision tasks. It is 
built on top of Apache MXNet; it provides pre-trained models, tools, and utilities to facilitate 
the development and deployment of computer vision applications [Guo et al. 2020]. 
ADE20K developed by MIT, is a dataset commonly used for semantic segmentation tasks in 
computer vision. It includes images across various scenes and provides pixel-level annotations 
for objects and their categories.
Researchers and developers use ADE20K to train and evaluate algorithms for scene under-
standing [Zhou et al. 2017]. Geostatpsy 0.0.26 is a Python library related to geostatistics, 
which involves the analysis and interpretation of spatial data [Pyrcz 2022].
Random points have been generated from the Milan street network with a minimum dis-
tance of 100 meters to ensure a diffuse distribution throughout the city territory. Subse-
quently, georeferenced images were collected by querying the Google Street View™ API 
with the coordinates extracted from the shapefile. 
The images provided by Google are reasonably close to the selected points, with a maximum 
deviation of 5 meters. Spatial continuity analysis involves the computation of variograms that 
examine the degree of variation in urban features across space; to ensure comparability, the 
spatial analysis process involves normalizing the recorded quantities of urban features to a 
standard scale. In this context, the “range” measure refers to the distance beyond which the 
spatial correlation between feature values becomes negligible. 
Variogram maps illustrate how the correlation strength decreases with increasing separation 
distance. The maximum range and related continuity orientation (azimuth) have been cal-
culated for each feature analyzed. The term “orientation” we will use in variogram analysis 
corresponds to the azimuthal direction in which spatial continuity is examined. It helps to 
understand whether the correlation between urban features is directionally dependent or 
isotropic. In summary, the analysis encompasses the evaluation of spatial patterns, the range 
that indicates the spatial extent of correlation, and the orientation that provides insight into 
the directional dependencies. 
These variogram insights are crucial for understanding the distribution and relationships 
among urban features in the Milan street network. For evaluating possible overlapping of 
the analyzed feature, I built a matrix of feature/orientation considering the azimuth of the 
maximum range of each feature; the minimum distance value in the matrix of ranges is con-
sidered the limit of possible shared continuity among the analyzed features. Urban features 
are then represented as weighted heatmaps, informed using the panorama’s coordinates 
provided by the related Google metadata.

Fig. 1. Spherical panorama 
view of one point in the 
street network of Milan. 
Source: Google Street 
View™.
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Results

From the points generated onto the street network polylines, 3138 panorama pictures are 
obtained (fig. 1) and segmented according to the ADE20K urban categories (fig. 2). 
Data related to vertical natural elements have been aggregated in an umbrella “greenery” 
category, horizontal natural elements have been aggregated as “ground”. 
Because all images are shot on streets, this kind of surface is common to all dataset and its 
quantity can be derived by subtracting other features from the scene. 
For this reason, in the following analysis, the street feature is not considered, taking into ac-
count only features that can vary along the street section, such as the amount of greenery 
and buildings. 
After normalizing the values of the four categories, we can compare how these are related; 
in particular, it is possible to triangulate the values of the greenery, buildings, and sky. 
As shown in  (fig. 3), the amount of visible sky is inversely proportional to the buildings; 
furthermore, we can see that increasing greenery is inversely proportional to both buildings 
and the sky. 
These results suggest that these three elements are linearly concurrent in determining the 
articulation of the scene.

Fig. 3.On the left, three-
dimensional scatter plot 
of urban features. On the 
right, planar scatterplot 
of the sky versus buildings 
feature. The gradient 
represents the amount 
of greenery in the two 
charts. The triangular 
shape of the point 
distribution shows how 
these three features are 
reciprocally concurrent.  
Elaboration by the author

Fig. 2. Image semantic 
segmentation of the pa-
norama picture; colored 
masks highlight different 
features: in azure the 
sky, brown the buildings, 
green vegetation, blue 
cars, gray street, orange 
and yellow the barriers.  
Elaboration by the author.
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The variograms of the four categories (fig. 5) show an anisotropic reality where 
maximum continuity ranges and orientation (azimuths) are the following: greenery 
2.5 Km at 45° N; building 4.2 Km at 45° N; ground 7.0 Km at 67.5° N; sky 4.9 Km at 
90°N (fig. 4). 
These results suggest that significant visual continuity in terms of feature proportions 
follows mainly a diagonal trend, stretching from the southwest to the northeast. The 
ground feature is the only one that presents an isotropic distribution, slightly pro-
longed in one direction. 

Table 1. Moran I spatial 
autocorrelation analysis. 
All features show positive 
significant (p<0.05) 
correlations, meaning that 
like values tend to cluster.

Computing a Moran I analysis [Moura and Fonseca 2020] for autocorrelation (table 1) we 
can verify that all four features have positive results, meaning that points with a similar value 
of a feature tend to be close, then we can expect to see circumscribed areas of similar con-
ditions. Autocorrelation can be deepen by analyzing the reciprocal spatial correlations of the 
four features using the Queen algorithm for point-neighbor mapping [Moura and Fonseca 
2020] to inform an Ordinary Least Squares regression (OLS) analysis. Values in table 2 con-
firm significant negative spatial correlations between greenery, buildings, and sky variables. 
In addition, it does not reveal a significant relationship between ground values and buildings. 
The correlation between ground and sky indicates that the ground percentage increases the 
amount of visible sky. At the same time, the ground is also positively correlated with green-
ery. Taking this information together, we expect to see high-intensity areas of trees, ground, 
and sky that occupy opposite zones compared to the buildings; furthermore, we expect to 
see partial overlapping of greenery and ground, while greenery and sky should occupy dif-
ferent areas; in addition, ground and sky should overlap but in different zones compared to 
the one occupied by greenery.

Table 2. Ordinary Least 
Squares regression (OLS) 
analysis. Each feature is 
analyzed as a dependent 
variable on the other 
three in search of mutual 
influences. The red values 
represent the increasing 
effect, the blue values 
the decreasing effect, 
and green are significant 
statistics (p<0.05). 
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Fig. 4. Variograms maps 
showing the anisotropic 
nature of the data. On 
top left, greenery; top 
right, buildings; bottom 
left, ground; bottom right, 
sky. The plasma gradient 
highlights the distribution 
of positive correlations; 
red lines mark the 
azimuth of maximum 
spatial continuity, namely: 
greenery 45°; building 
45°; ground 67.5°; sky 
90 °.  
Elaboration by the author.

Fig. 5. Maximum range 
variograms of the four 
features: on the top 
left, greenery; top right, 
buildings; bottom left, 
ground; bottom right, 
sky. The bold black line is 
the sill, where correlation 
become negligible. 
The red dashed line 
represents the point 
where data cross the sill 
and marks the maximum 
continuity range in a 
direction. Elaboration by 
the author.
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This limit approximatively corresponds to the average distance between Milan’s ur-
ban expansion boundaries. The proportion of urban characteristics is not evenly 
distributed in the city texture due to its historical expansion process; for instance, the 
green elements directly visible at street level are mainly distributed out of the Beruto 
urban plan boundary (1889) except for large green areas such as Sempione Park. 
The ground feature, representing horizontal natural areas, is more intense where 
the street sections are more prominent, as in Enrico Fermi Street in the northwest. 
The proportion of visible sky is affected by all vertical elements, both natural and built; 
for this reason, the larger sky proportions are localized to highways in the southeast. 
The remaining feature of the building is denser in the city center inside the Beruto 
expansion ring. 

Table 3. Spatial continuity 
ranges for the four urban 
features. The three 
azimuth angles relate to 
the maximum ranges 
of the four features as 
shown in Fig. 5, and Fig. 
4. In green, the maximum 
range for greenery; in 
red, the largest range for 
the urban features at the 
three angles, and in blue, 
the smallest range.

Fig. 6 Heatmap of 
greenery (in green) 
and ground (in red) 
overlapped.  Elaboration 
by the author.

Moreover, among these ranges, the the maximum greenery value result is 2.5 Km; 
however, this cannot be considered the shared continuity range when the four cat-
egories are evaluated together. Comparing the ranges of all categories at the three 
azimuth angles (45°, 67.5°, 90°), we can assess that the limit of possible continuity in 
all four categories together is 1.9 Km (table 3). 
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To compare where the four features are more intense, I generated four heatmaps 
weighted with the features of the point. 
Combining the greenery with the ground heatmap (fig. 6), and the buildings with the 
sky heatmap (fig. 7), it is possible to observe how the natural elements are distribut-
ed mainly on a ring surrounding the city center, where, on the contrary, the buildings 
are denser. 
This result is not surprising, but remarkably, the two halves of the town show differ-
ent uses of natural elements. Although the west side shows more vertical vegetation, 

Fig. 7. Heatmap of 
buildings (magma 
gradient) and sky (azure) 
overlapped. Elaboration 
by the author.

Fig. 8. Heatmap of all 
four features overlapped.  
Elaboration by the author.
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the east side has a larger proportion of visible horizontal natural elements. Moreover, 
larger sky proportions are visible where the ground feature substitutes both buildings 
and trees on the east side of the modern expansion ring. In (fig. 8) the four heatmaps 
are overlapped to represent the constellation of street view features in the entire 
town.

Discussion

The present study systematically analyzed spatial patterns and correlations between 
various urban characteristics within the Milan street network. The methodology in-
volved generating random points throughout the city, ensuring a diffuse distribution, 
followed by querying the Google Street ViewTM API to obtain images in the selected 
points. Spatial continuity analysis, represented through variograms, provided valuable 
information on the variation of urban features across space. The “range” parameter 
indicated the spatial extent of the correlation, whereas the orientation parameter 
revealed directional dependencies. The results suggest that the distribution of urban 
features is not uniform, and understanding these patterns is crucial to grasping the 
visual dynamics within the Milan street network.
Moving to the results, the segmentation of panorama pictures based on ADE20K 
urban categories yielded 3138 images, and after normalizing the values, the triangu-
lation of the greenery, buildings, and sky indicated inverse proportional relationships.  
Moran I analysis confirmed a positive autocorrelation for all four features, indicat-
ing localized areas with similar feature values. The ordinary least squares regression 
(OLS) revealed significant negative spatial correlations between greenery, buildings, 
and sky, while ground values do not show a significant relationship with buildings.
Variograms of the four categories illustrated maximum continuity ranges, with major 
visual continuity following a diagonal trend from the southwest to the northeast. The 
analysis suggested that the limit of possible continuity for all four categories is approx-
imately 1.9 Km. Furthermore, the uneven distribution of urban characteristics in the 
texture of the city, influenced by historical expansion processes, was evident in the 
heatmaps. In conclusion, the study provides a comprehensive understanding of the 
spatial distribution and correlations between urban characteristics in the Milan street 
network. The findings contribute to urban planning and design by highlighting areas 
of concentrated features and informing decisions on green spaces, buildings, and sky 
visibility. The methodological approach presented here can be adapted to similar 
analyses in other urban contexts, offering a valuable tool for urban researchers and 
planners.

Limitations

In future work, it will be helpful to apply the method to a denser dataset to describe 
the urban features across the city with a finer grain. Further research could inquire 
about the axial continuity of these features in Milan and relate them with the history 
of urban expansion.
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