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Abstract

In the digital Cultural Heritage domain, the ever-increasing availability of 3D point clouds provides the
opportunity to rapidly generate detailed 3D scenes to support the restoration, conservation, main-
tenance and safeguarding activities of built heritage. The semantic enrichment of these point clouds
could support the automatization of the scan-to-BIM processes. In this framework, the use of Artificial
Intelligence techniques for the automatic recognition of architectural elements from point clouds can
thus provide valuable support.

The described methodology allows increasing the Level of Detail in the semantic segmentation of
built heritage point clouds compared to the current state-of-the-art through deep neural networks.
The main outcome is therefore the first application of DL framework for CH point clouds, with the
subsequent implementation of the selected neural network (the DGCNN) for the semantic segmen-
tation task. These results also permit to evaluate the pros and cons of this approach, along with future
challenges and trend
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Introduction

2018 was the European Year of Cultural Heritage and, within the related European Framework
for Action on Cultural Heritage, the innovation and the use of digital technologies to enhance
access to cultural heritage (CH) creating digital contents have been highly incentivized, recall-
ing also what stated during the Council of Europe Framework Convention on the Value of Cultural
Heritage for Society (Faro Convention of 2005).

In this sense, geomatics can bring significant benefits to the CH field. Among the main
ones, it allows digital data production to catalogue and preserve historical memory, for
the analysis and conservation of assets (movable and immovable), for their fruition even
remotely or for the safeguarding in conditions of risk or vulnerability. In particular, point
clouds are an increasingly used tool for asset management, and their always greater in-
volvement is mainly due to the latest developments of faster and more efficient acquisi-
tion tools such as Mobile Mapping Systems (MMSs). Combining these systems with more
consolidated techniques, as terrestrial laser scanning or aerial photogrammetry, allows the
acquisition of massive amounts of data, sometimes even excessive. In fact, the generated
point clouds are usually subsampled, filtered and post-processed for an effective use and
to simplify their management.

This element has created an increasing interest of the scientific community towards the use,
interpretation and direct exploitation of point clouds, contributing to the widespread usage of
this 3D data also in other sectors such as autonomous navigation, robotics and bioinformatics.
Related to this type of data, a new trend has recently emerged in information technology:
the semantic segmentation of point clouds through artificial intelligence techniques such
as Machine and Deep Learning (ML/DL). This tendency allows point clouds to be used as
a basis for 3D modelling or as a support for semantic data processing. In the geomatics
field, the subdivision of the point clouds into predefined categories (for an architectural or
urban/regional scale) entails various tasks: speeding up the reconstruction of 3D models,
automating analysis in GIS environments, supporting 3D city modelling, and so on. In par-
ticular, it could also be beneficial for the semantic enrichment of HBIM (Historic Building
Information Modelling) and to speed up the reconstruction of parametric objects, whose
scan-to-BIM process is still entrusted with manual operations. Experts are yet claimed at
handling large and complex datasets without the aid of any automatic or semi-automatic
method to recognize and reshape 3D elements. These operations are usually time-con-
suming and, as mentioned above, involve the waste of a large amount of data, given the
unavoidable simplification exerted since the objects can be described through a few rele-
vant points or contours.

In this scenario, the comeback of DL has been overwhelming [Griffiths, Boehm 20193,
pp. 1-29], and deep Neural Networks (NNs) settled as the more efficient technology for
learning-based tasks [Bello et al. 2020, pp. 1-34]. However, although artificial NNs proved
to be very promising for handling and recognizing 3D data, for CH, manual operations still
look more trustworthy. There are many reasons for such skepticism; first of all, CH assets
have complex geometries, which can be described only with a high level of detail. Moreo-
ver, the irregular shapes joined with the uniqueness of objects, make unsupervised learning
techniques arduous for 3D data. Besides the intrinsic complexity of 3D data, especially if
compared with 2D ones (e.g. images or trajectories), there are other limitations that are
hampering the exploitation of deep NNs for CH; on the one hand, the lack of training
data, on the other, the computational effort.

To foster research in this direction, it has been implemented an automatic semantic seg-
mentation workflow along with the setting of a newly created database to be used as a
common base. Besides, a Level of Detail (LoD) higher than the one achieved in the state-
of-the-art for the semantic segmentation of point clouds [Boulch et al. 2018, pp. 189-198;
Landrieu, Simonovsky 2018, pp. 4558-4567; Weinmann et al. 2015, pp. 271-278] was
likewise required. In fact, among the usual and general categories as building, vegetation,
street or vehicle, the building class lacks further detail, e.g. roof, column, stair, arch, floor or
vault (Fig. 1) which have been here investigated.
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Fig. I. Comparison
between the state-of-
the-art LoD for semantic
segmentation and the
proposed one. On

the bottom, the HBIM
models obtained from
the point clouds.

Tab. I. Main weaknesses
and strengths provided
by the exploitation of
point clouds with DL
techniques.

BIM/HBIM

Speed-up HBIM and 3D model
reconstruction

Semantic 3D and Weinmann et al., 2017.

l 4

Multiscale analyses

The research questions this study tried to address are:

* is it possible to operate a multiscale point cloud semantic segmentation from urban to
architectural scale? And which LoD should be selected?

* are DL techniques suitable for the CH domain, where the standardization of the ele-
ments, which should help automatic recognition, is almost absent?

* what are the pros and cons of the proposed methodology?

Point Cloud Semantic Segmentation Approaches

When dealing with point clouds, it has to be taken into account that they are geometric
structures of irregular nature, characterized by the lack of a grid, with a high variability of
density, unordered and invariant to transformation and permutation [Zaheer et al. 2017,
pp. 3392-3402], making the use of DL techniques not straightforward and even more
challenging when dealing with digital CH oriented datasets.

Method Drawback Pro

* Limitations and loss in geometric structures
* Laborious to choose enough appropriate * Solution to the structuring problems of point cloud
viewpoints for the multi-view projection data

* Information bottleneck: limited exploitation | * Easy application of CNN that proved to achieve

of the potential of 3D data excellent results

* Duplication of raw data

Multiview-based

* High memory and computational power * Ordered grid, maintaining the continuous properties

Voxel-based required . . . and the tridimensionality of the point cloud
* Introduction of discretization artefacts - .
* Exploitation of the potential of 3D data
* Data loss
* Bypassed the structuring problems of point cloud data
. . * Direct exploitation of 3D data, particularly useful
‘ » Moderate computational power required
Poini-based 1 | gealing to a larger scene is stil unexplored for the scan-to-BIM process
g 8 P * Latest trend of using graph NN can help integrating
prior knowledge into the model
* Large amount of data required for training
the model
« Mainly focused on indoor scenes or for aerial | | Process automation and unsupervised learning in
Al LiDAR point clouds P g

* Not designed for CH domain many cases

* Lack of a comprehensive and labelled CH
dataset of point clouds
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On the other side, using point clouds make it possible to automate the recognition of
the various architectural elements in the object-oriented software and overcome some
limitations given by the use of 2D images, such as data incompleteness (given by the lack
of three-dimensionality), lighting problems or possible occlusions.

Currently, point cloud semantic segmentation approaches can be divided into three cat-
egories [Zhang et al. 2019, pp. 179118-179133]:

* Multiview-based: they rely on the creation of a set of images from point clouds, on
which Convolutional Neural Networks (CNN) can be applied;

* Voxel-based: they consist in the rasterization of point clouds in voxels, which allow
having an ordered grid of point clouds, while maintaining the continuous properties and
the third dimension, thus permitting the application of CNNs;

* Point-based: the classification and semantic segmentation are performed by applying
feature-based approaches, directly exploiting the point clouds.

The main strengths and weaknesses of the point clouds exploitation methods, defined
on the basis of the literature review, are reported in Tab. |.

Selection of neural networks for testing

Based on the considerations presented in Table I, the point-based methods were chosen
for the semantic segmentation in the CH domain, even if recent studies apply also other
approaches [Pellis et al. 2022, pp. 429-434]. In particular, among the networks proposed
in the state-of-the-art, the deep NN selected for this study have been: PointNet [Qi et
al. 2017a, pp. 77-85], its extensions PointNet++ [Qi et al. 2017b, pp. 5100-5109], Point
CNN [Atzmon et al. 2018, pp. I-14] and the Dynamic Graph CNN, DGCNN [Wang et
al. 2019, pp. 1-12]. The latter addresses many shortcomings of the previous works and
consumes point clouds through graph structures.

With respect to these four deep NNs, the DGCNN has proved to achieve good results
with the proposed dataset; therefore, it has been deepened and modified for the pur-
poses of this research. PointNet++ and Point CNN (PCNN), on the other side, were
less generalizable, and they seemed to work well mainly with small datasets and simple
classes as in the case of ScanNet. Their results have been described in [Pierdicca et al.
2020, pp. 1-23].

Dataset

From the state-of-the-art investigation, it emerged that there are few datasets specific
for some CH areas, such as [Korc, Férstner 2009; Teboul et al. 201 |, pp. 2273-2280; Ty-
le¢ek, Sdra 2013, pp. 364-374]; nevertheless, they only provide bidimensional data, and
they mainly consist of manually annotated fagade images from different cities around the
world and diverse architectural styles.

Regarding 3D data, an interesting project named OpenHeritage 3D has been proposed
to provide open access to 3D CH datasets and foster community collaboration. Howev-
er, only not labelled point clouds are available.

Precisely for these reasons, it has not been possible to identify one suitable dataset;
hence an ad hoc one has been created.

The created dataset constitutes a new 3D large-scale benchmark for heritage point
clouds (named ArCH dataset — Architectural Cultural Heritage) with millions of manually
labelled points belonging to heritage scenarios [Matrone et al. 2020, pp. 1419-1426].

It has been made available for the scientific community, and it originates from the collab-
oration of different universities and research institutes (Politecnico di Torino, Universita
Politecnica delle Marche, FBK Trento, Italy, and INSA Strasbourg, France), offering for
the first time, annotated point clouds describing heritage scenes.
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Fig. 2. Overview of the
tests subdivision.

Fig. 3. The relation
between stride and
block size and footprint
of the endless blocks
along the half scene of
the Trompone church
to highlight the scene
subdivision.

Methodology

In the following section, the DL framework based on the DGCNN and its implementation
[Pierdicca et al. 2020, pp. 1-23] will be only briefly outlined, giving more prominence to
overall discussions and considerations on the method, highlighting the main results ob-
tained with the relative pros and cons and the challenges to be faced for the next future.
Generally speaking, a symmetrical scene was chosen to perform the preliminary tests to
set the network (Fig. 2, part |); then its generalization capability was tested, training it from
scratch on multiple scenes (Fig. 2, part 2), finally, the best configurations were tested on
the whole ArCH dataset (Fig. 2, part 3).

The achieved results are compared with the Ground Truth (GT) in terms of Overall Accu-
racy (OA), Fl-Score, Precision, Recall and mean Intersection over Union (mloU).

Old classes
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v!’l' ]r
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s
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Symmetrical split:

+
« half for training and validation Multiple scenes (training from scratch):
* half for test * 12 scenes for training
i m « * 1 never seen by the network as test

Test

Training

k-NN and Hyperparameters Setting

Once chosen the DGCNN, it was necessary to adapt it to the ArCH dataset.

To do this, a symmetrical point cloud was first selected from the dataset to efficiently carry
out the preliminary tests on the network with moderate calculation times and computa-
tional power. In fact, the scene was split into two parts along the symmetry axis: one half
was used as a training/validation set and the other half for testing. This method allowed
setting the hyperparameters and provided the basis for all subsequent tests.

In the original DGCNN the analysis of the scenes takes place through endless blocks, inter-
spersed with a certain stride (Fig. 3).

A certain number of subsampled points to be used as input for the network is then de-
fined within each block. Therefore, it has been assessed whether different types of sub-
sampling of the initial point clouds (octree or space) could affect the final performances. As
a result, block size, stride and number of subsampled points were the first hyperparameters
to be tested.

Stride
—
Block size
Stride 2
block size
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Fig. 4. Example of 3D
features extracted and
relative radius.

Since the ArCH dataset's point clouds also contain the radiometric component (expressed
as RGB) and normal vectors, these values were also used as input for the network. In the
original DGCNN at the input layer, k-NN is fed with normalized points coordinates only,
while in this proposal all the available features were used. A scene block is thus introduced
into the DNIN, composed of |2 features for each point: x y z coordinates, x'y’z" normal-
ized coordinates, 3 colour features (RGB or its conversion into Hue Saturation Value
channels — HSV — or L*a*b*) and Nx Ny Nz normal vectors. This architecture was named
DGCNN-Mod (Modified).

Class Imbalance and DGCNN Implementation

The results of the preliminary tests highlighted a relevant issue of class imbalance. In fact,
all evaluated approaches failed in recognizing classes with low support, as doors, windows
and arches. Besides, for these classes, high variability in shapes across the dataset was
noticed [Pierdicca et al. 2020, pp. 1-23], and this element probably contributed to the
networks’ poor accuracy.

To remedy the class imbalance, several different approaches have been proposed in
the literature, e.g. [Buda et al. 2018, pp. 249-259; Pouyanfar et al. 2018, pp. | 12-117;
Ando, Huang 2017, pp. 770-785; Griffiths, Boehm 2019b, pp. 981-987]. Among these
proposals, the change of the loss function and data augmentation techniques, focused
only on the minor classes, have been selected. In particular, according to the work of
[Lin et al. 2020, pp. 318-327], a new type of loss has been chosen and implement-
ed in the DGCNN: the focal loss. It is designed to solve the issue of the imbalance
down-weighting the classes containing more examples to target the training on the
categories with fewer samples.

It was then decided to help the network with ad hoc features to discriminate the classes.
Based on the insights of [Grilli et al. 2019, pp. 541-548; Weinmann et al. 2015, pp. 271 -
278], a few 3D features were introduced to evaluate whether their contribution could
be similar to that produced with ML classifier as RF These 3D features derive from a
compound of eigenvalues (AI>A2>A3), and they can describe and emphasize the dif-
ferent architectural elements in a particularly explicit way. Those selected have been
verticality (fl and f3), omnivariance (f2), surface variation (f4), planarity (f5) and z value
(f6) (Fig. 4), so the new complete input data is ordered as follow: x, y, z, R, G, B, fl, {2,
3, f4, 15, f6, Nx, Ny, Nz.

Verticality (radius 0,1 m) Omnivariance (radius 0,2 m) Planarity (radius 0,65 m)

With these new 3D features, the performance of the DGCNN-Mod is compared with
two novel versions of this network: the DGCNN-3Dfeat and the DGCNN-Mod+3D-
feat. In particular, the DGCNN-3Dfeat adds to the k-NN only the 3D features; whereas,
for a complete comparison, the DGCNN-Mod+3Dfeat comprises all the |8 available
features [Matrone et al. 2020b, pp. 1-22].

The positive insights of 3D features and eigenvalues led to consider the option of con-
catenating them to those learned from the network so that they could be available in the
last layer before the semantic segmentation task. This procedure, theoretically, should
lead to using the features with their informative contents as they are, and not reworked
by the deep NN, adding new info to what has already been learned, and improving the
model convergence. Based on [Huang et al. 20177, a new structure has been thus creat-
ed to concatenate the initial 3D features with the last layer, defined as skip connection.
Besides, a DL approach can also be improved by using particular data augmentation

40



techniques on the training data. This solution is quite common with images, where col-
our space augmentations, random part exclusion, geometric transformations, kernel fil-
ters and so on can be applied and could also be used to prevent class imbalance. Many
of the usual techniques cannot be chosen with point cloud data, but there are other
methods, where the point cloud is augmented on-the-fly. In this case, rotation, clipping,
spatial shifting, jittering and scaling strategies have been implemented along with transfer
learning techniques [Matrone, Martini 2021, pp. 73-84].

Results and Discussions

The results obtained allowed an increased Level of Detail in the semantic segmentation of
built heritage point clouds.

Specifically, the literature review has made it possible to identify several criticalities in the
application of the DL framework to the CH domain, in particular:

* the scarce development of DL techniques for this domain and, even less, applied to
heritage point clouds;

* the lack of an adequate LoD for the semantic segmentation of CH point clouds;

* the absence of a dataset consistent with the aims of this research.

Precisely for these reasons, the ArCH dataset was expressly created to provide a starting
point for future developments in this field; however, it does not constitute a sufficiently
exemplary dataset of the multitude of architectural cultural elements, very variable and
different from each other across the various architectural lexicons.

For the annotation of this dataset, a Level of Detail equal to 3 was selected, according to
the CityGML standard. This LoD improves the one present in the state-of-the-art, but on
the other hand, it can be further increased only in proportion to the size of the datasets
available for the DL techniques.

The results of the tests performed highlighted the importance of introducing normal vec-
tors (and even more their correct orientation) and the radiometric component. Con-
cerning the latter point, the test performed to investigate the relation between the colour
channels and the individual classes showed that the use of HSV led to a slight increase in
the performances. Regarding the subsampling method, the variation in the results between
octree and space-based methods was about 9% of OA in favour of the octree. In this case,
the immediacy of the space-based method was chosen for the following tests, even if with
slightly lower results.

With this configuration, 73% of OA was obtained for the symmetrical scene and 83% of
OA for the tests conducted with part of the benchmark scenes as a training set. These
first results showed a good recognition of those classes represented by more points in the
training set, and a significant criticality for the categories with fewer points. Class balancing
has, therefore, turned out to be one of the main issues to be addressed. The introduction
of focal loss, to overcome it, did not guarantee overwhelming results. In fact, the arch class
was the only one to improve its metrics, while for the other classes with fewer points (col-
umn, door/window, stair and molding) common pattern could not be identified.

The introduction of 3D features is the element that, most of all, boosted the perfor-
mances of the network: in the symmetrical scene, it led to an increase of about |10% of
OA, while with an unseen scene of about 3%. Although the gain in OA is smaller in the
second case, if the classes with a low number of points are considered, it emerges that
almost all of them improve their metrics with the use of 3D features. Considering the
Fl-score: arch + 1%, column + 43%, door/window + 6%, stair + 14% are obtained.
Therefore, it can be said that their introduction, associated with the use of focal loss, has
led to the expected results.

The skip connection’s introduction, to further improve the model convergence, resulted
not very effective in terms of OA, but useful for discriminating some specific classes such
as molding and door/window. Comparing the Fl-score between two tests with and with-
out skip connection a + 6% for the molding and + 2% for the door/window are recorded.
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Fig. 5. Ground truth (on
the top), the prediction
of the first test with the
DGCNN (in the middle)
and the final test with the
DGCNN-Mod+3Dfeat
(on the bottom). The
represented point cloud
is one of the two test
scenes of the ArCH
dataset, and it belongs
to the Sacro Monte of
Varallo (SMV).

The data augmentation approach has confirmed a viable path for point clouds, even if, as
described for the previous tests, it was impossible to identify a common pattern: some
classes are discriminated better than others alternately, depending on the combinations of
hyperparameters used.

Broadly speaking, to pursue DL generalization, the classic solution of expanding and im-
plementing the training set is still the most suitable one, but the lack of additional datasets
remains a compelling criticality for future developments.

In conclusion, after choosing the approach and the deep NN to be implemented, it has
been possible to step from an initial 56.19% of OA up to a final 86.3% (86.6% with the
whole ArCH dataset) (Fig. 5).

Wall MEEFloor HERoof MEColumn MMolding Vault B Arch [ Stair

Door/Window

Conclusions: Future Perspectives and Challenges

Recalling the initial research questions it can be stated that it is certainly possible to in-
crease the Level of Detail for the deep semantic segmentation of point clouds represent-
ing buildings or architectural assets. In particular, to date, it is feasible to reach a LoD equal
to 3 with point-based approaches.

Although the CH domain is characterized by patchy elements and, consequently, poorly
standardized, the creation of a new annotated dataset has provided the basis for the ap-
plication of DL techniques even on CH point points. Currently, given the lack of labelled
data, ML classifiers (such as Random Forest) are an excellent alternative, but they do not
define the winning solution.

Based on the obtained results, future developments of this topic may consist in the in-
tegration of an ontological structure or taxonomy within the neural network, in order
to guide and eventually correct it in the learning phases and the automatic training data
generation to increase the dataset size.
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Fig. 6. Comparison

with the state-of-the-
art performances of
Semantic3D benchmark
compared to ArCH in
terms of mloU. SMV and
SMG correspond to the
two test point clouds of
the ArCH dataset.

The methodology proposed includes, among its strengths, the possibility of guaranteeing
unsupervised learning, thus limiting the manual intervention of operators in processes such
as the scan-to-BIM. In addition, feature engineering is less time-consuming with respect
to other classifiers since the neural network can automatically learn the discriminating
features. Finally, a good generalization and a high tuning capacity of the hyperparameters
is also guaranteed.

The weaknesses, on the other hand, reside in the training set size dependencies, training
time (strongly dependent on the hardware used and still higher than traditional classifiers)
and unbalancing of the classes. This last aspect is undoubtedly a challenge for deep learning
techniques applied to point clouds and, even more, for the CH field. As for the other dis-
advantages mentioned above, they will be partially solved in the next future with the con-
tinuous technological developments, which will assure ever higher computational powers.
Regarding the scarcity of labelled datasets and tests, it should be noted that recent studies
e.g. [Wysocki et al. 2022, pp. 529-536; Cao, Scaioni 2022, pp. 1-22; Pellis et al. 2022, pp.
429-434] are focusing on this topic, thus contributing: i) to the diffusion of the dataset,
il) to its extension and iii) to the improvement of NNs' performances trained on built
CH point clouds. Likewise, a further research trend linked to the semantic segmentation
task consists in using the output of artificial intelligence algorithms as input for additional
processing, e.g. scan-to-BIM procedures [Croce et al. 2021, pp. |-34] and/or mixed reality
[Teruggi et al. 2021, pp. 155-162].

The scientific community's increasing and compelling interest in point cloud processing
and semantic segmentation certainly leaves hope for excellent future prospects.out skip
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Broadly speaking, to pursue DL generalization, the classic solution of expanding and im-
plementing the training set is still the most suitable one, but the lack of additional datasets
remains a compelling criticality for future developments.
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Conclusions: Future Perspectives and Challenges

Recalling the initial research questions it can be stated that it is certainly possible to in-
crease the Level of Detail for the deep semantic segmentation of point clouds represent-
ing buildings or architectural assets. In particular, to date, it is feasible to reach a LoD equal
to 3 with point-based approaches.

Although the CH domain is characterized by patchy elements and, consequently, poorly
standardized, the creation of a new annotated dataset has provided the basis for the ap-
plication of DL techniques even on CH point points. Currently, given the lack of labelled
data, ML classifiers (such as Random Forest) are an excellent alternative, but they do not
define the winning solution.

Based on the obtained results, future developments of this topic may consist in the in-
tegration of an ontological structure or taxonomy within the neural network, in order
to guide and eventually correct it in the learning phases and the automatic training data
generation to increase the dataset size.

The methodology proposed includes, among its strengths, the possibility of guaranteeing
unsupervised learning, thus limiting the manual intervention of operators in processes such
as the scan-to-BIM. In addition, feature engineering is less time-consuming with respect
to other classifiers since the neural network can automatically learn the discriminating
features. Finally, a good generalization and a high tuning capacity of the hyperparameters
is also guaranteed.

The weaknesses, on the other hand, reside in the training set size dependencies, training
time (strongly dependent on the hardware used and still higher than traditional classifiers)
and unbalancing of the classes. This last aspect is undoubtedly a challenge for deep learning
techniques applied to point clouds and, even more, for the CH field. As for the other dis-
advantages mentioned above, they will be partially solved in the next future with the con-
tinuous technological developments, which will assure ever higher computational powers.
Regarding the scarcity of labelled datasets and tests, it should be noted that recent studies
e.g. [Wysocki et al. 2022, pp. 529-536; Cao, Scaioni 2022, pp. 1-22; Pellis et al. 2022, pp.
429-434] are focusing on this topic, thus contributing: i) to the diffusion of the dataset,
il) to its extension and iii) to the improvement of NNs' performances trained on built
CH point clouds. Likewise, a further research trend linked to the semantic segmentation
task consists in using the output of artificial intelligence algorithms as input for additional
processing, e.g. scan-to-BIM procedures [Croce et al. 2021, pp. |-34] and/or mixed reality
[Teruggi et al. 2021, pp. 155-162].

The scientific community’s increasing and compelling interest in point cloud processing and
semantic segmentation certainly leaves hope for excellent future prospects.
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