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Abstract

The study presents an innovative approach to classify geomaterials using supervised classification 
methods from orthophotos derived from UAV (Unmanned Aerial Vehicle) and photogrammetric 
processing. The case study examined is the Ponte Rotto, dating back to 20 BC, which in antiquity 
allowed the Appian Way to cross the Calore River – between the provinces of Avellino and Beneven-
to – to continue towards the port of Brindisi. In previous studies, experts on geomaterial diagnosis 
estimated – from aerophotogrammetric orthophotos generated for both bridge elevations – the geo-
materials and quantities used for the construction of the monument and an overview of the state of 
conservation of the monument studied. Orthophotos of facades were imported into CAD software 
and used as the basis for – according to a manual process – the mapping of the materials. The work 
presents the results according to automatic Machine Learning clustering from the same orthophotos 
to identify geomaterials.
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Introduction

The generation of digital models and outputs for cultural heritage, in the form of point 
clouds or 2D products, is a powerful tool for scholars, architects, archaeologists and cura-
tors to support analysis and planning operations. Therefore, the correct management of 
these resources is crucial for better understanding the investigated asset and developing 
appropriate conservation strategies [Álvarez 2021]. Many of these procedures in profes-
sional practice are still linked to conventional techniques, such as manual drawing using 
CAD software. For example, the survey for restoration is characterised by a considerable 
attention to the reading of the state of conservation, to the stratification of the masonry 
and to the crack drawing. These representations are made by manual work guided by spe-
cialised operators who often rely on in situ analysis and their personal skills.
In parallel to the traditional approach, the analysis and automatic extrapolation of infor-
mation from digital models is undergoing rapid diffusion, with significant advances in the 
procedures for segmentation and classification of 3D models or 2D drawings. As known 
segmentation is the process of grouping data into homogeneous clusters with similar 
properties, while classification is the operation that labels these clusters [Grilli 2017]. In 
the literature, we can encounter many studies on the topic, mainly driven by specific needs 
provided by the field of application (building modelling, heritage documentation and con-
servation, etc.). Most segmentation algorithms are tailored to work with a 2.5D surface 
model hypothesis coming, for instance, from a LiDAR-based survey. Many algorithms re-
quire fine-tuning of different parameters depending on the nature of the data and ap-
plications. Most of these are supervised methods, where a training phase is mandatory 
and crucial to guide the subsequent machine learning classification solution [Guo 2015; 
Niemeyer 2014; Xu 2014; Weinmann 2015; Hackel 2016; Qi 2016]. Considering the avail-
ability and reliability of segmentation methods applied to imagery and the effectiveness of 
machine learning strategies, we present our work and methodology developed to assist 
heritage workers in analyzing artefacts, the core of which consists of 2D segmentation of 
orthophotos derived from photogrammetric survey for geo-material classification.
The benchmark for the proposed methodology is represented by the Ponte Rotto (Bro-
ken Bridge). The structures still preserved today can be traced back to a viaduct built 
with quadrangular pillars in opus quadratum, arches, and gable end walls in concrete 
covered with bricks. Unfortunately, only the western ramp on the left side of the river 
Calore, made of bricks and limestone blocks, and three pillars on the opposite bank and 
an arch are preserved today. These structures have already been the subject of a study 
that, starting from orthophotos derived from photogrammetric survey, has returned, 
among other outputs, a lithological map showing the percentages of the different ma-
terials making up the artefact [Germinario 2020]. The whole procedure was developed 
with a traditional approach, reworking the orthophotos in a CAD environment and 
drawing the boundaries of the different regions. Our research aims to propose a ma-
chine learning technique for the localization of the different geo-materials that allows 
an efficient classification with a reduction of manual input. The segmentation results are 
then compared with those obtained from the traditional approach, to highlight possible 
deviations in the percentages. Such operations can facilitate the study of heritage mon-
uments and integrate heterogeneous information and attributes, useful to characterise 
and describe the surveyed object. The research presented was motivated by the con-
crete need of archaeologists to identify and map the building functions and materials 
of heritage structures. To address this need, we developed a method to (i) distinguish 
different construction techniques, (ii) recognise the presence of specific materials, and 
(iii) assess their percentages and distribution over the investigated surfaces. Detect-
ing these types of information in historical buildings using traditional methods, such as 
manual mapping or simple visual examination by an expert, are time-consuming and 
laborious procedures [Corso 2017]. Therefore this proposal aims to pave the way for 
less time-consuming solutions and the involvement of specialised personnel while still 
guaranteeing an accuracy compatible with the objectives of the research.
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Case Study

Ponte Rotto is part of the Via Appia, a fundamental road that connected Rome to Brindisi 
and the East, defined by classical historians for the importance of the route as the regina 
viarum. The bridge crossed the river Calore near the ancient city of Benevento, on the way 
to the ancient Aeclanum [Aurigemma 1911, pp. 355-359]. It straddles the municipalities of 
Apice (BN), Bonito (AV) and Venticano (AV). The structures can be traced back to a viaduct 
bridge from Roman times and cover a chronological span from the 1st BC to the 7th AD, 
within which at least four different building techniques can be identified, referable to as many 
historical phases.
Nowadays, only three piers and one archway are preserved, however, historical sources have 
described six arches (from 10 to 22 m wide) with a total length of 190 m and a variable 
height of up to 13 m [Galliazzo 1995; Johannowsky 1991]. It was one of the most important 
bridges in Campania because of its size, unfortunately it has been in a state of neglect in re-
cent years. The bridge was restored in Longobard Era, with the addition of concrete pillars 
aimed at supporting wooden arches that replaced the collapsed arcades. This intervention, 
due to the state of degradation of the structure likely aggravated by floods and overflows of 
the Calore river, was no longer sufficient in Medieval times, when the crossing was moved 
on a smaller bridge built with recycled materials of the same Hadrian bridge [Santoriello 
2014; Santoriello 2018]. However, the bridge has been abandoned for centuries, experienc-
ing carelessness and weathering that have resulted in a bad state of conservation. Actually, 
the monument in 1980s was interested by restoration and consolidation works with the 
addition of concrete pillar reinforcements [Quilici 1996]. Since 2011, several institutions, 
namely DISPAC (Department of Cultural Heritage Sciences) and DICIV (Department of 
Civil Engineering) of the University of Salerno, started a multidisciplinary project (Ancient 
Appia Landscapes) for the study and valorisation of the Appian Way. One of the first studies 
in 2017 was an aerophotogrammetric survey by UAV whose results were used for litho-
logical and damage estimations. This paper describes the results of the photogrammetric 
survey that allowed the construction of a three-dimensional model of the Ponte Rotto, used 
to estimate – in automatic mode – the geomaterials quantity of the different architectural 
portions of the monument.

Photogrammetric Data Acquisition and Elaboration

In May 2017, the bridge was surveyed, and the photogrammetric results were used for 
the lithological assessment. Details of the analytical approach adopted for the study are 
given below. The tests carried out on Ponte Rotto were aimed at validating the photo-
grammetric acquisitions from UAV, namely a DJI Phantom 4, a drone weighing about 
1400 g, capable of shooting 4K video at up to 30 frames per second and streaming HD 
video to smartphones, tablets and external devices through a special App (DJI Go).
The camera is equipped with a 12 MPixel Sony Exmor sensor (sensor size 6.3 x 4.7 mm, 
pixel size 1.56 μm), which has a wide-angle lens with a focal length of 4 mm and FOV 
(Field of View) of 94°. The camera integrated in the gimbal maximises image stability 
during filming. To geo-reference and control metric error, six ground control points 
(GCPs) were placed on the ground and measured by a global navigation satellite system 
(GNSS). The GCPs were materialised on the ground using photogrammetric targets 
(30 × 30 cm) and topographic nails. The GNSS survey refers to the Italian geodetic and 
cartographic system UTM/ETRF00 [Barbarella 2014]. The accuracy of the planimetry is 
less than 1 cm and 2.5 cm for the altimetry. The photogrammetric shots were acquired 
in manual mode due to the presence of obstacles on the west side of the bridge (Fig. 
1). Three flights were planned, and a total of 273 images, according to 3 consecutive 
strips, were acquired in time-lapse mode (5 s interval). In the first flight, 74 photographs 
were acquired in nadir mode (NW-SE direction, average height 19 m, ground coverage 
approximately 29.9 x 22.3 m). 
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Then, two other flights, with the camera tilted at 45° in the horizontal plane, were carried 
out, acquiring a further 96 and 106 photos (17 m and 9 m on both sides; ground covers of 
approximately 26.8 x 20 m and 14.2 x 10.6 m, respectively). The aerial photogrammetric 
images were processed in Agisoft Metashape, version 1.7.3 build 12473.
The orientation parameters were estimated in Metashape, using a self-calibrating bundle 
adjustment (BA) by including the GCPs. These estimated parameters were then used to 
orient the images. Additionally, the estimated parameters were kept constant during the 
entire RGB data processing. The following parameters were set to calculate the point 
clouds: in the Align Photos phase, accuracy = High (original photos), Key-Point limit = 
60,000 and Tie-Point limit = 40,000. To optimize the camera alignment process, f (focal 
length); cx and cy (principal point offset); and k1, k2, k3, and k4 (radial distortion coef-
ficients) were fitted. In the building of the Dense Cloud, the parameters used were as 
follows: Quality = High (1/4 of original photos), and Depth Filtering = Disable; once the 
complete elaboration of the photogrammetric shots were done, it created the texturized 
3D model of the bridge, used to extract the orthophotos of elevations, required for the 
next calculates needed of the geomaterials that compose it (Fig. 1).

Pixel-Based Segmentation

The applicability of supervised machine learning (ML) algorithms for accurately seg-
menting pictures was studied in this work. Supervised machine learning creates models 
in which machines are trained with labelled data (i.e., input data already tagged with the 
appropriate output) and then predict the outcome based on that data. In supervised 
learning, the training data presented to the machines acts as a supervisor, instructing 
the machines on how to anticipate the output accurately.
WeKa (Waikato Environment for Knowledge Analysis), developed at Waikato University 
in New Zealand, is one of the most well-known workbenches for data mining, employing 
machine learning to accomplish pixel-based segmentation. Contains a variety of data 
analysis and predictive modeling visualization tools and algorithms, as well as graphi-
cal user interfaces enabling quick access to these operations [Bouckaert 2010; Witten 
2002]. Data preprocessing, regression, classification, visualization, clustering, and feature 
selection are just a few of the usual data mining operations that WeKa offers.
The Trainable Weka Segmentation plugin (TWS) was used to train a classifier, then used to 

Fig. 1. Image acquisitions. 
Orthophoto West and 
East.
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segment the remaining validation data automatically. The ImageJ plugin is a collection 
of picture segmentation and machine learning techniques included in the open-source 
image processing program Fiji and can be installed on the free-access software ImageJ. 
[Arganda-Carreras 2017].
Pixel-based segmentation is performed using the Fast Random Forest method, a par-
allel version of the Random Forest classification approach [Breiman 2001; Ho 1995]. 
Random Forest is a versatile machine learning technique that can be used to a wide 
range of problems, including regression and classification. It comprises a number of 
decision trees, each of which represents a unique categorization of data fed into the 
random forest. The random forest method evaluates each occurrence separately, se-
lecting the one with the most votes as the chosen prediction. 
Each classification tree uses samples from the initial dataset as input. The features are 
then chosen at random and utilized to build the tree at each node. No tree in the 
forest should be trimmed until the exercise is completed and the prediction is made 
definitively. Random forests can also handle large datasets with a high dimensionality 
and a wide range of features. Using a training set of manually annotated images, the Fast 
Random Forest algorithm is first trained by examples in a supervised manner. Each pixel 
in these images has been individually labeled with its matching label. Then, the original 
image is presented to the model in each of these cases, which computes the actual 
answer. Following that, the model’s weights are changed to minimize the difference 
between this answer and the annotation that reflects the model’s predicted answer. 
Finally, the model’s performance is evaluated by comparing it to a different collection of 
photos than those used during the training phase. When the segmentation is successful, 
the result is overlaid with the matching class colors just over the original picture. The 
random forest method was chosen for image segmentation tasks in various disciplines 
for its accuracy, speed, and multi-class segmentation capabilities. [Belgiu 2016; Mahap-
atra 2014; Smith 2010].

Result

The bridge was built with different techniques and geomaterials, as observed in other 
coeval monuments in Benevento [Grifa 2007], which basically depend on the structural 
function they had. Lithological mapping highlighted the presence of tuff material, bricks 
and limestones welded by mortars (Fig. 2; Table 1). Concrete, due to recent restoration 
works, also occur (Fig. 2).
From the analyses carried out by experts in petrology and petrography, it is possible to iden-
tify 4 macro-groups of materials for the construction of the bridge: yellow tuff, bricks, lime-
stone and cement. The yellow tuff material is the predominant building stone in both eastern 
and western façades (23 % on average, Table 1), covering the lower part of the bigger lateral 
pillar and the central circular arch.
Yellow tuff can be attributed to pyroclastic trachytic rocks (likely Campanian Ignimbrite in 
Yellow facies), one of the first building materials since Roman times, largely used for other 
coeval historical monuments of Campania region [Morra 2010], also outcropping along the 
Calore river [Vitale 2018], as also observed in nearby contexts [Cilenti 2019].
The framework of tuff blocks is made up in opus incertum, intercalated with bricks. Bricks (8 
% on average, Table 1) were used as covering material in the upper part of all the elements 
of the bridge (arch and pillars). They are generally horizontally oriented (except for the arch-
way where they signed the arch shape). 
Limestones, occurring in different percentage on both sides (17 % on average, Table 1), have 
been recognized as large squared limestone blocks on the base of the pillars of the archway, 
and fluvial pebbles superimposed on the archway. 
It should be remarked that a significant surface of the bridge (eastern façade 11.0%, western 
surface 6.5%, Table 1) was not investigated due to the presence of plants mainly growing on 
the top and the bottom of the façades. 
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Fig. 2. Geomaterial 
distribution by ML 
supervised approach.

Table 1. Distribution 
by manual and ML 
supervised approach.

Façade Tuff Brick Limestone Cement Mortar Not observable

Western
Manual Analysis 23.2% 8.5% 17.2% 4.6% 40.0% 6.5%

ML Analysis 30.8% 17.8% 38.2% 4.9% / 8.5%
Eastern

Manual Analysis 23.2% 10.1% 15.7% 4.6% 39.1% 11.0%
ML Analysis 27.2% 12.9% 34.7% 4.7% / 19.6%

Mortar-based materials containing volcanic aggregate and covering around the 40% of the 
examined surfaces (Table 1) were used to bind the different building materials [Izzo 2016]. 
These mortar-based binders are highly dispersed within the orthoimages and difficult to bind 
to pixel-based macro-clusters. 
Therefore, the classes analysed by supervised ML algorithms only considered the four mac-
ro classes listed at the beginning of this paragraph. From the analyses carried out using ML 
algorithms, it can be seen that there is an overestimation of the percentage for each class of 
material compared to the more exact manual techniques. 
The principal reason for this is the presence of mortar; in fact, the greatest overestimates 
occur where mortar is greatest in point form, i.e. in the top part of the bridge, where the 
geomaterials there are a strong predominance of Limestone. Therefore – as a percentage – 
the ML analysis for Limestone has a very high error percentage (average error ratio of 2.2 
times the percentage estimated by manual techniques). 
The best estimates of quantity are for the brick (average error ratio of 1.68) and for the not 
observable part (average error ratio of 1.54), which are affected by high overestimates due 
to the participation of point mortar in the areas where these classes have been identified.         
The best estimates of the quantity of materials occur where these are continuous and with-
out the presence – at least not excessively punctual – of mortar, i.e. for yellow tuff (mean 
error ratio of 1.24) and cement (mean error ratio of 1.04), where the percentages estimat-
ed by ML algorithms can be considered acceptable.

Conclusion

This work aimed to evaluate the detection of different geomaterials within high-resolution 
orthophotos generated from 3D photogrammetric models, in this case, specifically from 
UAVs in the Ponte Rotto. The applicability of supervised machine learning (ML) algorithms 
to accurately execute multi-class segmentation on images at a pixel level – in particular, the 
WeKa algorithm used in this study implementing the Fast Random Forest method – high-
lighted some limitations in the presence of point and irregular lithotypes within the ortho-
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image that are present in this work with the specific case of the mortar geomaterial. From 
the experimentation carried out in this investigation, even the use of the same orthophoto 
but at higher resolutions (the one used for the calculations has a resolution of 1 cm, tests 
were carried out for 0.8 and 0.5 cm) did not lead to gross improvements or acceptable 
percentages of recognition of that type of geomaterial that carries to a minor difference 
with the manual analysis. 
On the other hand, in the case of compact geomaterials – as was the case of the yellow 
tuff and cement – continuous along the image surface, the estimations made by the ML 
algorithm are very close to those analysed by comparison with calculations made in previ-
ous works with experienced personnel. Therefore, better results can be obtained for or-
tho-image studies in which the materials do not have punctual variations, but are arranged 
continuously along a surface, as is generally the case for building facades. 
In fact, specifically in facades characterised by continuous and linear material layers – as 
already known from other studies cited in the text – in the realisation of clusters, the pro-
posed machine learning algorithm manages to define better the portions of materials char-
acterised by different textures, obtaining better results in the differentiation of geomaterials, 
and accomplishing percentages of each type that are in agreement with those obtained 
manually by an expert, reaching a less time-consuming and laborious solution. As future 
works, subsequent studies will be carried out – always in archaeological contexts – on case 
studies where the texture is homogeneous in layers, verifying the accuracy in clustering 
the orthoimage. Subsequently, the orthoimage will be reprojected on the starting point 
cloud, in order to obtain for each 3d point a “scalar field” relative to the material to which 
it belongs.
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