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Abstract

This project proposes an automated approach to the census of technological and architectural el-
ements from massive photography datasets. This use case is built on photogrammetric close-range 
acquisitions performed via UAV over the roofs of the centre of Bethlehem, in order to map the water 
tanks  for civilian use that create loads on historical buildings in a seismic area. The urban census was 
conducted within “3D Bethlehem. Management and control of urban growth for the development of 
Heritage and Improvement of life in the city of Bethlehem”, a project promoted by  AICS. The pre-
sented work leverages the project dataset to train Deep Learning models on a Cloud Infrastructure 
handling model lifecycle from training to deployment. Tests were conducted on historical buildings 
that show, among objects of interest, multiple spurious elements such as debris and junk. Such density 
creates complex scenarios for models that are trained to automate recurrent operations to assist 
large scale monitoring and management of the areas for different teams and municipalities. 
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Introduction

The proposed research aims at automating the census process of technological and architectural 
elements in urban contexts, starting from massive photographic datasets. The use case this is 
built upon is that of installations on the covering of the historical centre of Bethlehem, selecting 
the dataset from UAV close-range photogrammetric acquisitions and fits within the scope of 
the International Cooperation Project 3D Bethlehem. Management and control of urban growth 
for the development of Heritage and Improvement of life in the city of Bethlehem [1]. Starting from 
2018 researchers from DAda-LAB, from University of Pavia, conducted multiple surveys to 
build a complete documentation of the historical centre of Bethlehem. This research leverages 
close-range photogrammetric acquisitions [Picchio 2019] consisting of more than 9000 UAV 
photographs of the city centre.
While the final goal of the 3D Bethlehem was that of providing the municipality with a digital 
tool to improve governance of the urban complex of Bethlehem, the presented piece of work 
arises from the need of an automated tool for the monitoring of specific elements of the urban 
environment. The analytical process to understand urban contexts is tied to the construction 
of reliable data bases to develop strategies for communication and virtual fruition of spaces. 
Historical centres retain information concerning the numerous events that impacted the city 
over the years and create an heterogeneous and variable dataset that can be systematised 
[Bocconcino 2019]. The chosen use case stems from the need to map the water tanks that 
civilians place on the roofs. Tanks are used as water supplies but create structural criticalities 
placing localised loads on the coverages in a seismic environment [2]. The urban landscape 
follows the morphology of underlying hills and is dotted with a high number of tanks that are 
visible from multiple angles: mapping these elements is one of the intervention priorities for 

Fig. 1. Different tanks 
visible on the covering. 
The majority of surveyed 
tanks has a capacity of 
either 500 or 1000 litres, 
causing high load on the 
coverings.
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the municipality. This requirement fits in the scope of UNESCO site management plan, in 
which to develop alternative proposals for the replacement of such infrastructures. Tanks 
fall in different categories: plastic tanks are the most widespread (54%) and are on average 
well preserved but have a heavy impact due to colour, either black or white, contrast with 
the building; metal tanks (46%) on the other side are either cylindrical or box shape and in a 
worse state of conservation (Fig. 1).
Across the four years span of the 3D Bethlehem a census of such elements was performed 
and tank data was structured in a database [3]. During provisioning, the tanks that show flow 
control issues show leaks on coverings and facades causing material pathologies, vegetation 
growth and creating moist areas on the walls. Tanks are visible all around Bethlehem, both 
in recently built structures (that show neither additional elements stored nor debris) and in 
historical buildings that show complex morphology along with stacked debris and scrap.  

Dataset Acquisition Methodology 

Studying the historical city centre of Bethlehem was conducted from data surveyed between 2018 
and 2021 to detect different building fabrics detectable in the urban context. During the surveying 
campaign a series of interventions aimed at consolidating and preventing structural damage have 
been detected across different neighbourhoods. In situ studies of Bethlehem city centre led to 
a subdivision in 20 areas based on historical subdivisions and road patterns across the city. Areas 
have been progressively named with letters from A (Church of Nativity neighbourhood) to V 
and different states of conservation can be found across different Areas; newly constructed 
buildings (V) can be found as well as stratified historical neighbourhoods (Area F) and only 
few of these Areas have been targeted by projects for renovation and consolidations [4]. Al-
Anatreh (Area F), the historical christian neighbourhood was widely impacted by interventions 
between 2003 and 2005 [Nasser 2005], while the other areas saw targeted interventions on 
specific building units having high historical and monumental value [5]. Despite interventions 
for consolidation and rebuilding of the urban fabric there is a widespread  portion of built 
fabric that show the presence of ruins, especially in P and R areas (Al Hreizat e Al Fawagreh 
Quarter) area U (Al Farahieh Quarter), C and N (Al Najajreh Quarter). This research focuses 
on Area R (highlighted in Fig. 3), a neighbourhood characterised by high building density with 
heterogeneous coverings considering both the typology and state of conservation, with some of 
those showing the presence of debris that hinder automated recognition of objects since partial 
occlusion may occur [Saleh 2021]. To build the experimental setup the team leveraged the aerial 
photography dataset to train Deep Learning models on a cloud infrastructure. Photographs 
from Area R (389 pictures) have been imported and from there a subset was manually tagged 
highlighting the objects to be detected by the Object Detection algorithm.

Fig. 2. Three-dimensional 
mesh model of the 
historic center of 3D 
Bethlehem project. 
Left: Experimental 
Area R highlighted with 
respect to the context 
of the historic center 
of Bethlehem. Right: 
cisterns highlighted on 
the buildings in Area R 
to understand the high 
number of elements 
present on the roofs.
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Photographic Acquisition via UAV

A fundamental phase of the proposed research was to have a vast photographic archive 
of close-range coverings available. For the roofs of the historic center of Bethlehem, over 
9,000 photographs were acquired to cover an area of   over 260,000 square meters, split into 
neighbourhoods. The photographs were taken with different camera angles:
–  zenith photographs of the roofs;
–  photographs angled from four different sides that make up the neighbourhood (Fig. 3).
The choice of taking the photos from different angles was necessary in order to generate 
an SfM model of the roofs, from which it was possible to orient and extrapolate ortho-
images [Picchio 2020]. The photographs have an overlap of 65-80% between them. The 
photographs allowed to obtain a very varied dataset both as urban extension and as a variety 
of points of view from which the cisterns were photographed [6].
As can be seen in Fig. 3, there are critical issues related not only to environmental conditions 
such as lights and shadows but also to the deposits of objects present on the roofs that make 
the urban fabric particularly complex. The goal of the project is that of training an automated 
recognition system able to detect tanks on the roofs, subsequently feeding a programmed 
monitoring process. Such monitoring allows to verify the compliance with a series of criteria 
set by the municipality of Bethlehem such as:
• The reduction of the visual perception of the cisterns from the roads;
• Their positioning in safe points and without structural criticalities.
As regards the structural verification of the criticality due to the presence of cisterns, was 
carried out a cross-reading of the data with what was acquired in the building census [7].
 

Deep Learning for Object Detection 

Object detection is a branch of computer vision aimed at identifying objects in images. The 
task is twofold since the algorithm has to isolate the object of interest in a potentially complex 
scene and then correctly identify the isolated object with the correct class.  
Since the introduction of Convolutional Neural Networks [Lecun 1995], Deep Learning 
(DL) models have become the standard thanks to the high performances achieved [Redmon 
2016]. DL models propose a layer based approach in which the image is fed into a series of 
processing stages that extract features that are then fed to a classifier. 
The computational complexity of this problem grows with the number of images in the 
training dataset and size in pixels of the images. In the simplest case, a sliding window is 
applied to each portion of the image and slid across the entire frame (convolution) to be 
subsequently processed by stages deeper in the model architecture. These supervised 
models require large datasets to provide a wide number of examples of the objects to be 
identified and multiple executions to train the models via backpropagation.

Fig. 3. Example of SfM 
photogrammetric 
acquisition of an area with 
photographs taken at 
50 m from the height of 
the roof from which the 
survey was conducted. 
Right: extraction of the 
ortho image from the 
photogrammetric model.
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The dataset is manually tagged identifying objects of interest, the data is then processed, 
matched with the ground truth provided and weights that govern the model behaviour 
are corrected to match the computed and expected result. Execution is repeated until a 
plateau in performance or a target number of training epochs is reached. With the availability 
of computing power and acceleration techniques, the complexity of models could grow 
and new methodologies for learning stemmed from this growth in capabilities. AutoML is 
a family of models, ensemble of models and feature engineering approaches that leverage 
ensemble and transfer learning techniques that allow faster construction of ML models and 
push towards the democratisation of Artificial Intelligence [He 2021].

Cloud Computing – Integrated Machine Learning Platforms  

This use case consists of a massive initial dataset and a potentially ever growing one, therefore 
computational complexity sets a constraint on the available approaches. Abstracting from 
the computational power available on premises removed the boundaries set by the physical 
hardware shifting the focus on the problem itself [Rivera 2020]. On premise set ups need to be 
expanded by buying new hardware if the dataset grows or a new choice of algorithm stresses 
the existing hardware configuration. Cloud Platforms offer on demand resources in a pay per 
use fashion, allowing to tailor the needs to the as-is state of the problem and scaling up or 
down on demand, depending on the computing power and storage required. The presented 
infrastructure was implemented within the Google Cloud Platform (GCP) set of tools. GCP is a 
suite of cloud computing tools that offer infrastructure, platform and software as a service tools 
running on Google data centres. Data storage is performed on the cloud itself allowing for high 
reliability, fast transfer speeds and resilience to failure. This use case should be considered as a 
piece of a wider project for surveying, documentation and feeding of an informative system for 
cultural heritage; this infrastructure provides storage, computing resources, machine learning 
management, dashboarding and other tools in a unified platform for the entire project lifecycle. 
This use case addresses a single area of the centre of Bethlehem, but the platform can be scaled 
to accommodate larger datasets, more complex models or additional components. A Cloud 
based infrastructure grows and shrinks as a tailored environment built around each of the 
use cases of the project. The components of this project are: Google Cloud Storage (GCS) 
buckets to store images, predictions, trained models, and Vertex AI. Vertex AI is a machine 
learning platform that covers the entire ML lifecycle from dataset tagging and splitting to training, 
deployment, performance tracking and management of ML models in a serverless environment. 
The models are accessible via UI and programmatically, and in case a new model outperforms 
the previous one it can be effortlessly swapped without concerns for the end users. An AutoML 
model was trained on a subset of 70 UAV images from the aerial photography dataset.

Fig. 4. Figure shows a 
ortho image with the 
output of the model 
overlayed on top. 
Highlighted examples 
of Correct Detections, 
mismatches, competing 
labels and missed objects. 
Both images show high 
precision.Left: False 
Negative: missed plastic 
tank close to metallic 
tanks.
Right: False Negative: 
missed plastic tank. Black 
tanks area critical due to 
the shadows on the roofs.
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Fig. 6. Precision/recall 
curve - 70 image dataset.

Fig. 5. Precision/recall 
curve - 30 image dataset.

Results

Initial tests were conducted on a 30 image dataset (UAV photographs), but the model lacked 
in the recall department failing to identify the correct group of pixels to be classified.
The higher the precision, the fewer false positives predicted, the higher the recall, the fewer 
false negatives, or the fewer predictions missed. With a threshold set at 0.5: 
• 80.5% precision;
• 28.0% recall.
Increasing the size of the training dataset vastly improved performance, to achieve current 
results the team used 70 UAV photographs for training. Increasing the size of the training 
dataset vastly improved performance since each image contains tens or hundreds of objects. 
Tagging a higher number of images increased by an order of magnitude the number of 
training examples. The second training instance was run on:
• N° parabola: 497
• N° tanks metal_round: 3180
• N° tanks metal_square:695
• N° tanks plastic_round: 188514
Portions of orthoimages of the same area were used for validation. UAV pictures captured 
from different angles and distances provide a natural data augmentation for the algorithm (Fig. 
5). The retrained model, threshold at 0.5: 
• 90.8% precision;
• 61.0% recall.
The greatest issues with recall are in dark areas, in which low light reduces contrast between 
objects and the high amount of cluttering and occlusion on the roofs where wood planks and 
debris are placed on the covers and on the objects themselves. (Fig. 6)
Since this model is intended as a screening tool to identify criticalities and plan interventions 
and maintenance, when deploying it for use the team opted for higher tolerance (hence 
lower threshold) accepting a higher number of false positives but ensuring a higher recall. 
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Conclusions and Future Developments

The research will broaden its scope, extending object detection to different areas of the city 
to study how the urban setting can alter the results of tests. The algorithm will be evaluated 
both on morphologically complex historic neighbourhoods and on recent constructions that 
show a disaggregated morphology, more isolated buildings and regular shapes. This second 
phase will allow the team to evaluate whether the algorithms should be retrained to handle 
the entire area of the city. Different elements can be detected and mapped alongside the 
tanks as well other characteristics of the buildings. Satellite dishes were included in the first 
phase of the experiments, providing interesting results in both precision and recall. Repeating 
the same analyses at different moments of time, devising an inspection schedule, will allow 
to compare the results and map the evolution of the built elements through time, identifying 
criticalities. State updates are performed thanks to ordinary periodical activities, planned 
within a management schedule, and extraordinary activities in case of critical events that can 
vary timings and needs for the inspections. 
The field of heritage conservation is tightly bound to best practises for fruition and 
safeguarding of buildings. Architectural conservation can stem from diagnosing the state of 
conservation of heritage, within the context it is located, anticipating the need for a procedural 
and systematic vision [Cecchi 2006]. Management and conservation of cultural heritage, also 
considering sets of actions that get scheduled and coordinated through time (Intervention 
time schedule), aims at improving the quality and identity of the elements. Such projects 
require multidisciplinary contributions, economical and management evaluations, as well as the 
involvement of the local population in the process of recognising the value and development 
opportunities of the existing heritage [Della Torre 2008]. The presented research targets 
the automation of processes in a widespread and complex built environment. Managing such 
scenario is a challenge for municipalities and automation facilitates the monitoring activities 
for entities and administrations. This process, if extended to the recognition of different 
architectural and technological elements, allows to improve the planning of protocols for the 
preventive maintenance tied to the actions context, maximising enhancement goals for the 
built heritage.

Notes

[1] 3D Bethlehem. Management and control of urban growth for the development of heritage and improvement of life in the city of 
Bethlehem is a cooperation project promoted by AICS, the Italian Agency for Cooperation and Development. The project 
is coordinated by the Municipality of Pavia, with a partnership made up of the Municipality of Bethlehem, the University of 
Pavia (scientific coordination), the University of Bethlehem, the Province of Pavia, the Order of Engineers of the Province 
of Pavia, the SISTERR territorial system of Pavia for international cooperation. APS, ANCI Lombardia, VIS – International 
Voluntary Service for NGO Development and Palestinian Engineers Association – Jerusalem Centre. The project is scientifi-
cally coordinated by Prof. Sandro Parrinello and DAda-Lab laboratory of the DICAr – Department of Civil Engineering and 
Architecture of the University of Pavia.

[2] The Dead Sea fault is an area subject to the risk of major seismic events. See in particular the seismic risk map produced 
by An-Najah National University – Nablus.

[3] The GIS-connected building database consists of structural and technological information about the buildings. The 
percentages relating to the different types of tanks present were obtained from the overall reading of the cards in the 
GIS system. For an in-depth study on the research relating to the database on the historic center of Bethlehem see: Doria 
Elisabetta, Picchio Francesca, 2020.

[4] The data refers to interventions mapped during the urban census up to 2019.

[5] Examples of localized interventions are the Syriac Hosh in Hreizat Quarter (2011-2013) in area P; Al-Badd Museum in 
Najajreh Quarter (2014) in area M and the refurbishment of the road network in area U (2018-2019) and Star Street in 
area O (2019).

[6] The photogrammetric acquisition of the roofs was conducted by Ph.D. Francesca Picchio during the 3D Bethlehem 
project. For specifics on the methods of acquisitions conducted and the tools used, see: Parrinello Sandro, Francesca 
Picchio (2019).

[7] This research was enforced in a collaboration between DJI Enterprise and the University of Pavia for the development 
of research activities, and the promotion of the different ways of using drones for cultural heritage. This collaboration is 
based on the “Agreement for the development of research activities about the digital documentation of cultural heritage 
and landscape using drones” between the Department of Civil Engineering and Architecture of the University of Pavia and 
iFlight Technology Company Limited, signed in February 2020, lasting three years.
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